2,000 research outputs found

    Highlighting objects of interest in an image by integrating saliency and depth

    Full text link
    Stereo images have been captured primarily for 3D reconstruction in the past. However, the depth information acquired from stereo can also be used along with saliency to highlight certain objects in a scene. This approach can be used to make still images more interesting to look at, and highlight objects of interest in the scene. We introduce this novel direction in this paper, and discuss the theoretical framework behind the approach. Even though we use depth from stereo in this work, our approach is applicable to depth data acquired from any sensor modality. Experimental results on both indoor and outdoor scenes demonstrate the benefits of our algorithm

    Entropy-difference based stereo error detection

    Full text link
    Stereo depth estimation is error-prone; hence, effective error detection methods are desirable. Most such existing methods depend on characteristics of the stereo matching cost curve, making them unduly dependent on functional details of the matching algorithm. As a remedy, we propose a novel error detection approach based solely on the input image and its depth map. Our assumption is that, entropy of any point on an image will be significantly higher than the entropy of its corresponding point on the image's depth map. In this paper, we propose a confidence measure, Entropy-Difference (ED) for stereo depth estimates and a binary classification method to identify incorrect depths. Experiments on the Middlebury dataset show the effectiveness of our method. Our proposed stereo confidence measure outperforms 17 existing measures in all aspects except occlusion detection. Established metrics such as precision, accuracy, recall, and area-under-curve are used to demonstrate the effectiveness of our method

    Parkinson's Disease Detection Using Ensemble Architecture from MR Images

    Full text link
    Parkinson's Disease(PD) is one of the major nervous system disorders that affect people over 60. PD can cause cognitive impairments. In this work, we explore various approaches to identify Parkinson's using Magnetic Resonance (MR) T1 images of the brain. We experiment with ensemble architectures combining some winning Convolutional Neural Network models of ImageNet Large Scale Visual Recognition Challenge (ILSVRC) and propose two architectures. We find that detection accuracy increases drastically when we focus on the Gray Matter (GM) and White Matter (WM) regions from the MR images instead of using whole MR images. We achieved an average accuracy of 94.7\% using smoothed GM and WM extracts and one of our proposed architectures. We also perform occlusion analysis and determine which brain areas are relevant in the architecture decision making process
    • …
    corecore